SpineLab: tool for three-dimensional reconstruction of neuronal cell morphology.
نویسندگان
چکیده
SpineLab is a software tool developed for reconstructing neuronal feature skeletons from three-dimensional single- or multi-photon image stacks. These images often suffer from limited resolution and a low signal-to-noise ratio, making the extraction of morphometric information difficult. To overcome this limitation, we have developed a software tool that offers the possibility to create feature skeletons in various modes-automatically as well as with manual interaction. We have named this novel tool SpineLab. In a first step, an investigator adjusts a set of parameters for automatic analysis in an interactive manner, i.e., with online visual feedback, followed by a second step, in which the neuronal feature skeleton can be modified by hand. We validate the ability of SpineLab to reconstruct the entire dendritic tree of identified GFP-expressing neurons and evaluate the accuracy of dendritic spine detection. We report that SpineLab is capable of significantly facilitating the reconstruction of dendrites and spines. Moreover, the automatic approach appears sufficient to detect spine density changes in time-lapse imaging experiments. Taken together, we conclude that SpineLab is an ideal software tool for partially automatic reconstruction of neural cell morphology.
منابع مشابه
The Effect of Rosmarinic Acid in Neural Differentiation of Wartons Jelly-derived Mesenchymal Stem Cells in Two Dimensional and Three Dimensional Cultures using Chitosan-based Hydrogel
Numerous studies have shown the positive effects of rosmarinic acid on the nervous system. Rosmarinic acid as a herbal compound with anti-inflammatory effects can prevent the destructive effect of inflammation on the nervous system. Furthermore, various studies have emphasized the advantages of three dimensional (3D) culture over the two dimensional (2D) culture of cells. In this study, thermos...
متن کاملA Novel Toolbox for Generating Realistic Biological Cell Geometries for Electromagnetic Microdosimetry
Researchers in bioelectromagnetics often require realistic tissue, cellular and sub-cellular geometry models for their simulations. However, biological shapes are often extremely irregular, while conventional geometrical modeling tools on the market cannot meet the demand for fast and efficient construction of irregular geometries. We have designed a free, user-friendly tool in MATLAB that comb...
متن کاملکاربرد چاپگر سهبعدی در بازسازی اشیای تاریخی شیشهای
Three-dimensional tools are widely used for various purposes, particularly Three- dimensional printers which play a great role in simplification and acceleration of phases in production process for various fields ranging from medicine to industry. Due to the problems related to the reconstruction of missing parts in restoration of historic glass objects in the methods of molding, casting and f...
متن کاملAutomated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images.
Experimental and theoretical studies demonstrate that both global dendritic branching topology and fine spine geometry are crucial determinants of neuronal function, its plasticity and pathology. Importantly, simulation studies indicate that the interaction between local and global morphologic properties is pivotal in determining dendritic information processing and the induction of synapse-spe...
متن کامل3-D computed tomography reconstruction: another tool to teach anatomy in the veterinary colleges
This letter underpins the use of three-dimensional computed tomography (3D-CT) reconstruction as an aid to teach veterinary anatomy. Cases were presented to students in order to observe normal and clinically abnormal patients. The images provided excellent details of relevant structures and could serve as a tool for teaching anatomy. Many sources describe different options to enhance anatomical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2012